News & Events

We are regularly participating in aviation weather, wind, and weather&climate industries events from main organizers around the world (Wind Europe, AWEA, Wind Power Monthly, ATC Global, Ukip Media, AMS, ect.).

If you have missed the chance to learn more about our solutions and benefit from the latest user experiences, please do not hesitate to contact us.

http://www.leosphere.com/news_events/husum-wind-2017
07/2017

Husum Wind 2017

12-15 September  – Husum – Germany More information about event here : http://www.husumwind.com/husumwind/en/index.php

12-15 September  – Husum – Germany

More information about event here : http://www.husumwind.com/husumwind/en/index.php

+
http://www.leosphere.com/news_events/meteorological-technology-world-expo-2017
07/2017

Meteorological Technology World Expo 2017

Come and meet us to the next Meteorological Technology World Expo 10th – 12th October Amsterdam – Netherlands Booth n°8020   More information about event here : http://www.meteorologicaltechnologyworldexpo.com/french/

Come and meet us to the next Meteorological Technology World Expo

10th – 12th October

Amsterdam – Netherlands

Booth n°8020

 

More information about event here : http://www.meteorologicaltechnologyworldexpo.com/french/

+
http://www.leosphere.com/news_events/8eme-colloque-national-eolien
07/2017

8ème Colloque National Eolien

19 – 20 Septembre 2017 Parc Floral de Paris – France Plus d’informations sur l’évènement au lien suivant : http://www.colloque-national-eolien.fr/

19 – 20 Septembre 2017

Parc Floral de Paris – France

Plus d’informations sur l’évènement au lien suivant : http://www.colloque-national-eolien.fr/

+
http://www.leosphere.com/news_events/wind-europe-conference-exhibition-2017
07/2017

Wind Europe Conference and Exhibition 2017

Come and meet us at Wind Europe Conference and Exhibition BOOTH n°1D92   28th – 30th November 2017 Amsterdam – Netherlands More information about the event here : https://windeurope.org/confex2017/?ref=WindEurope

Come and meet us at Wind Europe Conference and Exhibition

BOOTH n°1D92

 

28th – 30th November 2017

Amsterdam – Netherlands

More information about the event here : https://windeurope.org/confex2017/?ref=WindEurope

+
http://www.leosphere.com/news_events/press-release-lidar-user-experience-session
07/2017

PRESS RELEASE: Leading wind experts claim LiDAR becoming the clear choice for bankable offshore wind measurements, saving millions on costs

London, 18 July 2017. Leading wind measurement experts gathered in London claimed that LiDARs have been replacing met masts to become the sole wind measurement tool used for offshore resource assessment and power curve verification purposes. These experts stated that LiDAR technology had over the years fully proven its ability to provide wind measurements as

London, 18 July 2017. Leading wind measurement experts gathered in London claimed that LiDARs have been replacing met masts to become the sole wind measurement tool used for offshore resource assessment and power curve verification purposes. These experts stated that LiDAR technology had over the years fully proven its ability to provide wind measurements as reliably as met masts. They also claimed that LiDARs are faster, easier and much cheaper to deploy, enabling significant development and operational cost reductions.

wi-off-siemens-1

At a seminar hosted by Leosphere at the Offshore Wind Conference 2017, top wind measurement experts explained that years of successful LiDAR validation campaigns and strong competitiveness have led industry leaders to choose this technology over met masts for offshore wind feasibility studies as well as power curve verification tests.

Experience has taught us that the uncertainty levels offered by LiDARs are at least on par with those offered by met masts. Although we still encounter performance misconceptions surrounding LiDAR technology, it is now hopefully a mere question of time before the industry as a whole recognizes this technology, and IEC standards are adapted accordingly,” explained Anders Thoft Marcussen, Head of Measurements at DONG Energy and chairman of the London LiDAR Seminar. In practice, the use of nacelle mounted LiDARs is already frequently required in the turbine supply agreement for power curve verification testing, even if LiDAR measurements are not yet covered by IEC standards.

Met masts cannot compete with LiDARs on cost in the offshore market. On the Beatrice Offshore Wind Farm Ltd (BOWL) project, a 588MW 84 turbine offshore wind farm off the North East coast of Scotland, the wind measurement campaign was carried out without the use of a met mast. BOWL chose instead to install two vertical profiler LiDARs which enabled them to start the measurement campaign much earlier and without the significant costs associated with installing an offshore met mast. After 12 months of LiDAR wind measurement the project had the essential data needed to help achieve financial close on this £2.6 billion offshore project.

For an offshore project developed by RES, the installation of a met mast, estimated at €12 million, was ruled out in favour of a single fixed LiDAR, coupled with two floating LiDARs.  The fixed LiDAR, installed on a nearby lighthouse, and the floating LiDARs located at points across the wind farm zone, enabled the company to secure reliable, bankable data adding millions of euros to the project value in addition to the millions in cost savings and the elimination of the health and safety risks associated with large met mast installation.

LiDARs have become a reliable, robust measurement system that ultimately delivers the high-quality data to minimise uncertainty and risk while maximising value. The prevailing view among experts is that the future of resource assessment is short masts coupled with LiDAR for onshore, and for offshore probably just the LiDAR. Today, LiDARs are commercially ready and already used in major projects around the world. It’s a trend that is going to continue both offshore and onshore, even in complex flow sites,” concluded Alexandre Sauvage, CEO of Leosphere.


About the LiDAR User Experience session: “Sharing LiDAR practices from financing to performance verification”

lidar-user-experience-session

At the Offshore Wind conference 2017 in London, Leosphere brought its community together, offering a unique opportunity for users to challenge their views and learn about the potential offered by LiDAR technology, quickly becoming a standard in offshore.Major offshore wind energy players have shared their experience on a wide range of applications, from energy yield assessment to contractual power performance testing. Best practices in offshore Lidar applications from different perspectives were presented, with case studies from developers, OEMs and consultants.

All presentations are available on request

  • Deutsche WindGuard – “Application of Nacelle Based Lidar for Offshore Power Curve Tests”
  • ECN“Offshore wind development with standalone Lidar”
  • EDF EN“Reducing uncertainties: vertical profiler, floating, scanning and nacelle Lidars”
  • MHI Vestas “Power curve verification with nacelle two-beam Lidar on V164-8.0 MW”
  • RES“Lidar: Just better than a mast?”
  • Siemens “From R&D to Plug & Play: 8 years of nacelle Lidar experience”
  • SSE “Replacing masts with Lidar for financing and performance assessment”
  • UL DEWI “Offshore Wind Lidar since 2009: from R&D to commercial applications”
Press Release available in PDF format here
leosphere-press-release_the-lidar-user-experience-session_offshorewind2017
+
http://www.leosphere.com/news_events/attending-offshore-wind-london-early-june-join-free-lidar-side-event-hear-key-players-sharing-experience
05/2017

Offshore Wind Energy – Join our Lidar user session

This year, we’ve decided to bring together our community and create a Lidar user session within the upcoming Offshore Wind Energy 2017 in London (6-8th of June, Day 1). A large panel of key players in the offshore industry will share their Lidar experience with different perspectives: Deutsche WindGuard, ECN, EDF EN, MHI Vestas,

This year, we’ve decided to bring together our community and create a Lidar user session within the upcoming Offshore Wind Energy 2017 in London (6-8th of June, Day 1).

A large panel of key players in the offshore industry will share their Lidar experience with different perspectives: Deutsche WindGuard, ECN, EDF EN, MHI Vestas, RES, Siemens, SSE and UL DEWI.

This free event is a special opportunity to learn and engage on a wide range of offshore applications, from energy yield assessment to contractual power performance testing.

We will conclude with a networking session followed by a reception at Leosphere’s booth (N-D60).

WHEN? Day 1, presentations from 2:00 pm to 4:30 pm, followed by a networking reception.

WHERE? Conference area, Capital Suite Room 13 – Conference Area – Level 3

HOW? Open to everyone upon registration. To confirm your attendance, please contact offshorewind2017@leosphere.com or visit the Leosphere stand N-D60 (North Hall). Click here to join our Lidar user session

CAN’T MAKE THE LIDAR USER SESSION? Join our reception (end of Day 1) on our booth N-D60 or schedule a meeting! Click here to schedule a meeting


 

 

+
http://www.leosphere.com/news_events/press-release-long-range-scanning-windcube-use-artic-climate-study
02/2017

PRESS RELEASE: A Long Range Scanning Windcube in use for Artic climate study

A Leosphere Windcube 100S is currently being operated by KOPRI (Korea Polar Research Institute) for Arctic atmospheric boundary layer (ABL) wind measurement, as required research activity for weather and climate prediction project of KOPRI. KOPRI is the one and only organization in South Korea which is dedicated to operate research infrastructures at Polar Regions. In January

A Leosphere Windcube 100S is currently being operated by KOPRI (Korea Polar Research Institute) for Arctic atmospheric boundary layer (ABL) wind measurement, as required research activity for weather and climate prediction project of KOPRI.

KOPRI is the one and only organization in South Korea which is dedicated to operate research infrastructures at Polar Regions. In January 2016, KOPRI launched the “KPOPS” (Korea Polar Prediction System) project, where the main objectives are to better understand Arctic climate and to improve prediction of weather and climate in mid-latitude regions.

arctic-dasan-station_courtesy-of-kopri

“It is now well known that Arctic is suffering climate change and climate of the Arctic affects mid-latitudes deeply. So we are very eager to understand what’s going on in the Arctic and want to improve climate model to better predict weather/climate in Korea” says Sang-Jong Park, KOPRI senior research scientist in charge of observational study in the KPOPS project.

The KPOPS project also involves Seoul National University (SNU), Pohang University of Science and Technology (POSTECH), Gwangju Institute of Science and Technology (GIST), Florida State University (FSU), and takes place in the Artic Dasan station in Ny-Alesund, Svalbard archipelago, Norway.

In this project, the Windcube 100S is collecting wind data on a continuous basis to understand 3D characteristics of the ABL of the Arctic. The second objective is to study the interaction of the ABL and Arctic clouds to understand their life cycle.

The Leosphere Windcube was chosen for the KPOPS project because of its demonstrated ability to profile the ABL with a good data availability and quality, and for the limited required maintenance, even when deployed outside in very harsh environmental conditions like those observed in Ny-Alesund.

The Windcube 100S is being successfully operated since mid-October at the Arctic Dasan station, not far from another Leosphere Windcube operating since 2013 by the German Alfred Wegener Institute (AWI). The first measurements gathered during the 2016-2017 winter will be compared with the AWI Windcube data.

Press Release available in PDF format : a-windcube-lidar-in-use-for-artic-climate-study_02072017

Pictures Copyright © *2017* Leosphere*, All rights reserved. – Courtesy of Leosphere and KOPRI

+
http://www.leosphere.com/news_events/intermet-asia-2
02/2017

INTERMET ASIA

Singapore, 21-22 March 2017 –  Join us on our booth # D8 Suntec Convention & Exhibition Centre, 1 Raffles Boulevard, Suntec City More information about the fair : http://www.intermet.asia/

Singapore, 21-22 March 2017 –  Join us on our booth # D8

Suntec Convention & Exhibition Centre, 1 Raffles Boulevard, Suntec City

More information about the fair : http://www.intermet.asia/

+
http://www.leosphere.com/news_events/world-atm-congress-2017
02/2017

World ATM CONGRESS 2017

Madrid, Spain 7-9 March 2017 Join us on our booth # 359 More information about the fair : http://www.worldatmcongress.org/

Madrid, Spain 7-9 March 2017

Join us on our booth # 359

More information about the fair : http://www.worldatmcongress.org/

+
http://www.leosphere.com/news_events/retours-sur-la-nuit-du-vent
01/2017

Retours sur “La nuit du Vent” à La Fondation Cartier – Paris

La Fondation Cartier  a organisé  à Paris le 8 Novembre 2016 dernier la  «Nuit du Vent ». L’idée était de s’interroger sur la nature du vent, de manière scientifique tout d’abord, puis de manière musicale et littéraire. A cette occasion, nous avons été invité à présenter notre Windcube. Nous avons pu faire découvrir à un nouveau public la technologie

La Fondation Cartier  a organisé  à Paris le 8 Novembre 2016 dernier la  «Nuit du Vent ».

L’idée était de s’interroger sur la nature du vent, de manière scientifique tout d’abord, puis de manière musicale et littéraire. A cette occasion, nous avons été invité à présenter notre Windcube. Nous avons pu faire découvrir à un nouveau public la technologie du Lidar à travers une démonstration pédagogique. Les mesures de vent ont pu être retranscrites en live par liaison ethernet puis projetées sur grand écran.

Animée par Cédric Villani, célèbre mathématicien et écrivain français, la soirée fut riche de rencontres, de projections et de lectures.

Pour en savoir plus : https://www.sortiraparis.com/scenes/spectacle/articles/127983-nuit-du-vent-a-la-fondation-cartier

 

Photos réalisées par ©Olivier Ouadah

 

Voici les différentes interventions de la soirée:

–          Liaison directe avec le voilier Tara – Martin Hertau

Skype avec Martin Hertau, capitaine du voilier Tara, depuis l’atoll de Maupihaa dans le Pacifique. Présentation de la mission actuelle de TARA et discussion sur la navigation à voile et la prise en compte des vents.

–          Mythes et mots du vent – Jean Loïc Le Quellec

Prise de parole de Jean Loïc Le Quellec, anthropologue, mythologue et préhistorien à l’Institut des mondes africains du CNRS sur les mythes du vent, et plus particulièrement les figures du tempestaire. Intervention liée à la projection du Tempestaire de Jean Epstein.

–          Les Vents du système solaire – François Forget

Prise de parole de François Forget, spécialiste des atmosphères des planètes du système solaire, sur les phénomènes de vent sur et autour de ces planètes.

–          Explication météorologique/scientifique du vent – Valerie Masson-Delmotte (à confirmer)

Prise de parole de Valérie Masson-Delmotte, paléoclimatologue, sur le phénomène du vent et son lien avec la question du climat.

–          Instruments de mesure du vent – Le Windcube de Leosphere

Démonstration en temps réel par Paul Mazoyer, un collaborateur de la société Leosphere de Windcube, outil de mesure du vent utilisant la technologie Lidar Doppler.

+
http://www.leosphere.com/news_events/nrg-systems-ams-exhibition-2017
12/2016

NRG Systems at AMS exhibition 2017

97th AMS Annual Meeting | 22–26 January 2017 | Seattle, WA   Come and see Leosphere and NRG Systems team booth #643 To get more information about event : https://annual.ametsoc.org/2017/ To get more information about NRG System activity : http://www.scanninglidar.com/

97th AMS Annual Meeting | 22–26 January 2017 | Seattle, WA

 

Come and see Leosphere and NRG Systems team booth #643

To get more information about event : https://annual.ametsoc.org/2017/

To get more information about NRG System activity : http://www.scanninglidar.com/

+
http://www.leosphere.com/news_events/leosphere-present-au-salon-pollutec-sur-le-stand-de-lifpen-lyon-29-novembre-au-2-decembre-2016
11/2016

Leosphere présent au salon Pollutec sur le stand de l’IFPEN – Lyon – 29 novembre au 2 décembre 2016

Venez nous rencontrer cette semaine au salon Pollutec sur le stand de l’IFPEN Hall : 4 | Allée : K | Stand : 147 Le salon Pollutec c’est  quoi ? Premier salon généraliste de l’environnement d’envergure internationale, Pollutec facilite la rencontre des professionnels autour des solutions innovantes et des nouvelles thématiques environnementales. 2500 exposants 400 conférences et émissions 8 grands secteurs

Venez nous rencontrer cette semaine au salon Pollutec sur le stand de l’IFPEN Hall : 4 | Allée : K | Stand : 147

Le salon Pollutec c’est  quoi ?

    • Premier salon généraliste de l’environnement d’envergure internationale, Pollutec facilite la rencontre des professionnels autour des solutions innovantes et des nouvelles thématiques environnementales.
    • 2500 exposants
    • 400 conférences et émissions
    • 8 grands secteurs d’activité concernés : DÉCHETS ET VALORISATION DE LA MATIÈRE / EAU ET EAUX USÉES / INSTRUMENTATION, MÉTROLOGIE, AUTOMATION / ENERGIE / AIR / RISQUES / SITES ET SOLS / COLLECTIFS RÉGIONAUX ET INTERNATIONAUX INSTITUTIONS – RECHERCHE – FINANCEMENT – ACHATS RESPONSABLES –

Pour en savoir un peu plus sur le salon : http://www.pollutec.com/Le-salon/Presentation-du-salon.htm

IFP Energies nouvelles est un organisme public de recherche, d’innovation et de formation dans les domaines de l’énergie, du transport et de l’environnement. avec qui Leosphere travaille depuis plusieurs années sur différents projets. Pour en savoir un peu plus sur l’IFPEN :http://www.ifpenergiesnouvelles.fr/

 

+
http://www.leosphere.com/news_events/atc-local-new-york-state-article-mti-magazine-september-2016
10/2016

ATC LOCAL – New York State – Article in MTI magazine – September 2016

MTI article 2016- ATC LOCAL – New York State Mesonet  by Ludovic Thobois from Leosphere, Everette Joseph, Jerald Brotzge, Chris Thorncroft from University of Albany, and Paul Drewniak from Renewable NRG Systems September 2016 Issue of Meteorological Technology International magazine.    

MTI article 2016- ATC LOCAL – New York State Mesonet  by Ludovic Thobois from Leosphere, Everette Joseph, Jerald Brotzge, Chris Thorncroft from University of Albany, and Paul Drewniak from Renewable NRG Systems

September 2016 Issue of Meteorological Technology International magazine.

 

 

http://www.leosphere.com/news_events/leosphere-present-au-colloque-national-eolien-2016
10/2016

Leosphere présent au Colloque National Eolien 2016

Leosphere présent au Colloque National Eolien 2016   Pitch Innovation – Intervention sur les applications innovantes de la technologie LIDAR (Paul Mazoyer / Ingénieur Applications) Pour visionner la présentation, cliquez sur le lien suivant : https://www.youtube.com/watch?v=wLNynNS0-70  
Leosphere présent au Colloque National Eolien 2016
colloque

 

Pitch Innovation – Intervention sur les applications innovantes de la technologie LIDAR (Paul Mazoyer / Ingénieur Applications)

Pour visionner la présentation, cliquez sur le lien suivant : https://www.youtube.com/watch?v=wLNynNS0-70

 

+
http://www.leosphere.com/news_events/weather-storm-august-2016
08/2016

Weather the storm – Article from MTI magazine – April 2016

Weather the storm – by Ludovic Thobois and David Langohr -Leosphere April 2016 Issue of Meteorological Technology International magazine.

Weather the storm – by Ludovic Thobois and David Langohr -Leosphere

April 2016 Issue of Meteorological Technology International magazine.

http://www.leosphere.com/news_events/nowcasting-severe-storms-observing-clear-air-close-proximity-environment-severe-storms-mti-september-2015-issue
08/2016

Nowcasting severe storms – observing clear air close proximity environment of severe storms

Nowcasting severe storms – observing clear air close proximity environment of severe storms –  by Ludovic Thobois and Joshua Soderholm September 2015 Issue of Meteorological Technology International magazine

Nowcasting severe storms – observing clear air close proximity environment of severe storms –  by Ludovic Thobois and Joshua Soderholm

September 2015 Issue of Meteorological Technology International magazine

http://www.leosphere.com/news_events/launching-wind-measurement-campaign-windcube-lidar-buoy-off-coast-dunkirk-france
05/2016

New project with Nass&Wind Smart Services : Launching of Wind measurement campaign with a Windcube LiDAR Buoy off the coast of Dunkirk in France

Lorient, the 27th of May 2016 – Nass&Wind Smart Services installed its Wind LiDAR Buoy, the M3EA platform (Marine Measurements for Meteorological and Environmental Assessment), off the coast of Dunkirk in France. Our system is now collecting wind data to achieve the set objectives, wind resource assessment and characterization for the future offshore wind farm. «

Lorient, the 27th of May 2016 – Nass&Wind Smart Services installed its Wind LiDAR Buoy, the M3EA platform (Marine Measurements for Meteorological and Environmental Assessment), off the coast of Dunkirk in France. Our system is now collecting wind data to achieve the set objectives, wind resource assessment and characterization for the future offshore wind farm.

« We aim at proposing those data to future players, from private or governmental entities, who would show interest for the Dunkirk’ offshore wind farm », said Romain Baronnet, managing director of Nass&Wind Smart Services.
On Monday, the 4th of April 2016, Ségolène Royal, Minister of the Environment, Energy and Marine Affairs, announced the third offshore wind farm tender for a site off the coast of Dunkirk. The call for tender procedure should be launched during this summer.
The M3EA system developed by Nass&Wind Smart Services, mounted with a LEOSPHERE Wind LiDAR measurement system, demonstrated its capacities to successfully comply with the expected recommendations for such campaign (Carbon trust Offshore Wind Accelerator roadmap for the commercial acceptance of floating LiDAR technology). This M3EA Wind LiDAR Buoy installed on the Dunkirk site has been tested and validated by DNV GL.

 

Media contact: Phone/ +33 (0)2 97 37 56 06 – email/ contact@nass-et-wind.com
——————————————-
Nass&Wind Smart Services : http://nassetwind.com/en/nasswind-smart-services-2/

+ Download
http://www.leosphere.com/news_events/windenergy-2016
05/2016

WindEnergy 2016

Hamburg, Germany 27-30 September 2016 http://www.windenergyhamburg.com/ Come and discover our Lidar Systems booth A1-332

Hamburg, Germany 27-30 September 2016

http://www.windenergyhamburg.com/

Come and discover our Lidar Systems booth A1-332

http://www.leosphere.com/news_events/mtwe-2016
05/2016

MTWE 2016

Madrid, Spain 27-29 September 2016 http://www.meteorologicaltechnologyworldexpo.com/french/ Come and meet us at the exhibition stand 4035

Madrid, Spain 27-29 September 2016

http://www.meteorologicaltechnologyworldexpo.com/french/

Come and meet us at the exhibition stand 4035

http://www.leosphere.com/news_events/atc-global-3
05/2016

ATC GLOBAL 2016

Beijing, China 12-14 September http://www.atcglobalhub.com/ Come and meet our Lidar experts on booth F8

Beijing, China 12-14 September

http://www.atcglobalhub.com/

Come and meet our Lidar experts on booth F8

http://www.leosphere.com/news_events/cmhe-expo
05/2016

CMHE Expo

Beijing, China 19-21 June http://www.mh-expo.com/ Come and meet us on our stand 4H03.

Beijing, China 19-21 June

http://www.mh-expo.com/

Come and meet us on our stand 4H03.

http://www.leosphere.com/news_events/noaa-buys-windcube-scanning-lidars-from-renewable-nrg-systems
06/2015

NOAA buys WINDCUBE Scanning Lidars from Renewable NRG systems

Renewable NRG Systems, a designer and manufacturer of decision support tools for the global renewable energy industry, announced today the recent sale of two WINDCUBE 200S 3D Scanning Doppler Lidars to the National Oceanic and Atmospheric Administration (NOAA). WINDCUBE 200S Lidars incorporate advanced techniques to measure the wind components on a large scale for short

Renewable NRG Systems, a designer and manufacturer of decision support tools for the global renewable energy industry, announced today the recent sale of two WINDCUBE 200S 3D Scanning Doppler Lidars to the National Oceanic and Atmospheric Administration (NOAA).

WINDCUBE 200S Lidars incorporate advanced techniques to measure the wind components on a large scale for short term campaigns or long term operations to reduce wind flow modeling uncertainties, understand physical phenomena such as wakes, and improve wind forecasting. They are able to perform a full 3D mapping of the atmosphere to provide remote measurements of wind speed, direction, turbulence, and boundary layer height.

+ Download
http://www.leosphere.com/news_events/technical-guidelines-for-wind-turbines-now-available-in-english-version
06/2015

TR6 Technical Guidelines for Wind Resource Assessment with standalone Lidar measurements now available in English

  To see the document : http://www.wind-fgw.de/tr_engl.html

 

To see the document : http://www.wind-fgw.de/tr_engl.html

http://www.leosphere.com/news_events/improving-the-energy-efficiency-of-wind-turbines-launch-of-the-anr-smarteole-project-on-wind-turbine-control-technologies
05/2015

Improving the energy efficiency of wind turbines: Launch of the ANR SmartEole project on wind turbine control technologies

The SmartEole project has just been launched following the French National Research Agency (ANR) call for projects on the theme “The energy efficiency of processes and systems”. This project is aimed at improving the energy production efficiency and lifespan of wind turbines via the development of innovative control solutions. One of the major challenges for the development of the wind

The SmartEole project has just been launched following the French National Research Agency (ANR) call for projects on the theme “The energy efficiency of processes and systems”. This project is aimed at improving the energy production efficiency and lifespan of wind turbines via the development of innovative control solutions.

One of the major challenges for the development of the wind power sector is reducing the cost of the energy produced. The implementation of advanced wind turbine control systems represents one of the levers to optimize performance and achieve production gains.

Scheduled to last three and a half years, the SmartEole project is being led by PRISME, a laboratory of the University of Orléans, working alongside three research partners, IFP Energies nouvelles (IFPEN), Le Laboratoire de Mécanique de Lille (LML–CNRS //University of Lille 1 // Ecole centrale de Lille // Ecole nationale supérieure d’arts et métiers de Lille) and the Laboratoire d’analyse et d’architecture des systèmes (LAAS-CNRS), along with two industrial partners, Maia Eolis and Avent Lidar Technology.

SmartEole will lead to the development of control techniques designed to improve the operating conditions of wind turbines. The challenge is to integrate sensor systems (particularly Lidar) capable of accurately detecting incoming wind speed, direction and intensity. By measuring incoming wind, it will be possible to implement real-time control strategies to optimize nacelle and blade orientation. By anticipating the optimum orientation of the wind turbine via the measurement of incoming wind, the mechanical constraints placed on the structure (mast and blades) are significantly reduced, thereby decreasing maintenance costs and increasing the lifespan of the structure. SmartEole also aims to underpin this strategy with innovative concepts, making it possible to reduce mechanical fluctuations for shorter characteristic times via an active flow control system
on the blades.

The control technologies developed within the project will thus be deployed on several scales – the blades, the turbines and the wind farm as a whole – and will form the focus of a range of research, from fundamental research conducted at lab scale up to full-scale demonstration in real conditions.

Two types of experimentation are planned:
– full-scale testing on a Maia Eolis wind farm using control strategies developed by IFPEN with Avent Lidar Technology sensors.
– wind tunnel measurements in facilities operated by LML and PRISME laboratories, with validation of control strategies developed by LAAS-CNRS and PRISME.

To know more about this projet, you are invited to consult the PDF document.

+ Download
http://www.leosphere.com/news_events/two-windcube-100s-scanning-wind-lidars-installed-for-the-norcowe-measurement-campaign-at-fino1
05/2015

Two Windcube 100s Scanning Wind Lidars installed for The Norcowe measurement campaign at FINO1

With good support from FINO operator FuE FH Kiel, scientists from CMR this week successfully completed the first installation phase for the offshore boundary layer experiment at FINO1, OBLEX-F1. Two Windcube 100s scanning wind lidars from LeoSphere and a RPG HATPRO microwave temperature profiler are now operational and connected to the FINO1 network, providing online data

With good support from FINO operator FuE FH Kiel, scientists from CMR this week successfully completed the first installation phase for the offshore boundary layer experiment at FINO1, OBLEX-F1. Two Windcube 100s scanning wind lidars from LeoSphere and a RPG HATPRO microwave temperature profiler are now operational and connected to the FINO1 network, providing online data access, remote monitoring and control of the instruments.

Photo by Benny SvardalPhoto by Benny Svardal

Deployment of the oceanographic instrumentation is planned for the first week of June with the research vessel Håkon Mosby from IMR. In the same timeframe, we will proceed with the second installation phase at FINO1 for the DCF sonic turbulence meters and breaking wave camera system. The meteorological and oceanographic measurements will run in parallel until the fall, when the oceanographic measurement buoys will be recovered. The meteorological measurements for OBLEX-F1 at FINO1 will continue until June 2016.

 

The FINO1 Measurement campaign, OBLEX-F1

NORCOWE is starting up an extensive offshore measurement campaign at the German research platform FINO1 close to Alpha Ventus wind farm. The campaign will take place from May 2015 to June 2016, and is carried out by CMR and UIB in close cooperation with the other Norcowe partners, FuE-Zentrum FH Kiel, Fraunhofer IWES, RAVE and ForWind. Benny Svardal at Christian Michelsen Research is responsible for the project management.

The key purpose of the campaign is to improve our knowledge of the marine boundary layer stability, air-sea interaction and offshore wake propagation effects. The collected observational data will be used to validate and improve numerical models and tools for i.e. weather forecasting, marine operations, power performance and wind farm layout. Additionally the campaign scope will cover research on motion correction techniques for floating sensor platforms.

In order to provide unique datasets for the study of boundary layer stability in undisturbed offshore conditions, we will perform simultaneous measurements of wind, temperature and humidity profiles in the MABL. By employing microwave radiometer and lidar remote sensing technology, we are able to map the boundary layer conditions continuously up to an altitude of 1000m.  To investigate the atmospheric stability around the wind farm, as well as the interaction of the Alpha Ventus wind turbines with the atmosphere and each other, NORCOWE plan to install two scanning lidar systems and a microwave-radiometer on the research platform. This is the first time that such an instrument is installed at on offshore location. Both the Lidar systems and the radiometer are able to perform continuous measurements up to an altitude of 1000 m.

In addition to the meteorological measurements from the FINO 1 platform, and the floating lidar buoy measurements provided by IWES, oceanographic instruments will be deployed near FINO1 for a shorter period. This instrumentation, mounted on bottom frames, submerged buoys, and the autonomous SailBuoy, will monitor wave statistics, surface currents and turbulence in the upper oceanic mixed layer. The collection of these data is crucial for studying air-sea exchange processes, which are known to influence the structure of the vertical wind profile and the atmospheric stability.

The deployed instrumentation will provide a highly versatile data set for investigation of the offshore wind profiles, wind shear and turbulence intensity as a function of atmospheric stability in and around the wind farm. The gathered data opens for the investigation of the structure, extension, dynamics and persistence of single turbine wakes and the near farm wake of Alpha Ventus.

Benny Svardal (Christian Michelsen Research AS)

To know more about: http://www.norcowe.no/index.cfm?id=423614

+
http://www.leosphere.com/news_events/the-us-national-oceanic-and-atmospheric-administration-noaa-has-bought-from-renewable-nrg-systems-two-windcube-200s
05/2015

The US National Oceanic and Atmospheric Administration (NOAA) has bought from Renewable NRG Systems two Windcube 200S

The US National Oceanic and Atmospheric Administration (NOAA) has bought from Renewable NRG Systems two Windcube 200S 3D scanning doppler lidars. NOAA’s chemical sciences division will use the units for a variety of measurement purposes, starting with the XPIA experiment at the Boulder Atmospheric Observatory (BAO) this month. The Experiment is a field campaign that aims

The US National Oceanic and Atmospheric Administration (NOAA) has bought from Renewable NRG Systems two Windcube 200S 3D scanning doppler lidars.Windcube-200S-_NOAA-Boulder

NOAA’s chemical sciences division will use the units for a variety of measurement purposes, starting with the XPIA experiment at the Boulder Atmospheric Observatory (BAO) this month.

The Experiment is a field campaign that aims to quantify uncertainties in Doppler lidar measurements of wind conditions.

The project is being conducted with funding from the Department of Energy.

More details: http://renews.biz/87815/noaa-takes-lidar-delivery/

+
http://www.leosphere.com/news_events/dong-banks-on-floating-lidar
04/2015

Dong banks on floating lidar

Dong Energy’s 258MW Burbo Bank 2 in the UK is the first offshore project to proceed on the back of floating lidar wind data. The Danish developer decided to press on with construction of the scheme, which will feature 32 MHI Vestas V164 8MW turbines, in December. To know

Dong Energy’s 258MW Burbo Bank 2 in the UK is the first offshore project to proceed on the back of floating lidar wind data.

The Danish developer decided to press on with construction of the scheme, which will feature 32 MHI Vestas V164 8MW turbines, in December.

Burbo-Bank-offshore-wind-farm-credit-Siemens

To know more about: http://renews.biz/87586/floating-lidar-kick-starts-burbo-2/

 

+
http://www.leosphere.com/news_events/atc-global-2
04/2015

ATC GLOBAL

Dubai, United Arab Emirates 5-7 October 2015  http://www.atcglobalhub.com/

Dubai, United Arab Emirates 5-7 October 2015  http://www.atcglobalhub.com/

http://www.leosphere.com/news_events/meteohydex
04/2015

METEOHYDEX

Geneva, Switzerland, 1-3 June 2015   http://www.meteohydex.com/

Geneva, Switzerland, 1-3 June 2015   http://www.meteohydex.com/

http://www.leosphere.com/news_events/ilrc
04/2015

ILRC

New-York, USA 5-10 July 2015 http://ilrc27.org/

New-York, USA 5-10 July 2015 http://ilrc27.org/

http://www.leosphere.com/news_events/ewea-technology-workshop
04/2015

EWEA TECHNOLOGY WORKSHOP

Helsinki, Finland 2-3 June 2015, http://www.ewea.org/events/workshops/resource-assessment-2015/ Contact: Lorenzo Morselli / techworkshops@ewea.org / +32 2 213 18 21 Web: http://bit.ly/EWEARA15

Helsinki, Finland 2-3 June 2015, http://www.ewea.org/events/workshops/resource-assessment-2015/

Contact: Lorenzo Morselli / techworkshops@ewea.org / +32 2 213 18 21

Web: http://bit.ly/EWEARA15

http://www.leosphere.com/news_events/wind-resource-assessement-2015
04/2015

Wind Resource Assessement 2015

http://www.leosphere.com/news_events/3-new-windcube-100s-scanning-lidars-have-been-acquiered-by-norcowe
04/2015

3 new Windcube 100S scanning Lidars have been acquiered by NORCOWE

Met profiles at roof of Bergen NORCOWE has added new state-of-the-art instrumentation to the Centre’s infrastructure pool for meteorological characterization. Through the OBLO project 3 new Windcube 100S scanning lidars and 2 new RPG HATPRO microwave radiometers have been acquired from LEOSPHERE and

Met profiles at roof of Bergen

NORCOWE has added new state-of-the-art instrumentation to the Centre’s infrastructure pool for meteorological characterization. Through the OBLO project 3 new Windcube 100S scanning lidars and 2 new RPG HATPRO microwave radiometers have been acquired from LEOSPHERE and Radiometer Physics, respectively.

 

The units have been through acceptance testing and calibration, and NORCOWE personnel have completed thorough training programs arranged by the suppliers.

The instruments are now deployed at the rooftop of StormGeo, UiB and CMR. For the next weeks we will map the wind and temperature conditions in the complex terrain surrounding Bergen and perform comparative measurements with the weather radar already installed at StormGeo. In addition, this deployment will provide valuable experience with equipment and measurement strategies as preparation for the upcoming FINO1 campaign.

Contact persons:

Dr. Joachim Reuder, Uib: joachim.reuder(at)gfi.uib.no

Dr. Olav Krogsæter, StormGeo: Olav.Krogsaeter(at)stormgeo.com

Benny Svardal, CMR: benny.svardal(at)cmr.no

NORCOWE | Phone: +47 55 57 40 40 | Fax: +47 55 57 40 41 | E-mail: post(at)norcowe.no

+ Download
http://www.leosphere.com/news_events/flidar-completes-fast-cost-effective-accurate-and-safe-offshore-wind-measurements-for-mainstream-renewable-power
03/2015

FLiDAR completes fast, cost effective, accurate and safe offshore wind measurements for Mainstream Renewable Power

FLiDAR have completed the onsite wind measurements at the Neart Na Gaoithe offshore wind farm being developed by Mainstream Renewable Power. Neart Na Gaoithe, a 448MW wind farm located in the North Sea off the East coast of Scotland, has recently been awarded a Contract for Difference (CfD) by the UK government. The FLiDAR floating LiDAR buoy

FLiDAR have completed the onsite wind measurements at the Neart Na Gaoithe offshore wind farm being developed by Mainstream Renewable Power.

Neart Na Gaoithe, a 448MW wind farm located in the North Sea off the East coast of Scotland, has recently been awarded a Contract for Difference (CfD) by the UK government.

The FLiDAR floating LiDAR buoy provided on-site wind measurements and resulted in a considerable development time and cost saving compared to a traditional meteorological mast.

The unit is now decommissioned and undergoing post validation at the ORE Catapult offshore met mast.

Reinhardt Stevens, General Manager of FLiDAR said “We are delighted to have delivered high availability and accurate wind data in such a short time to our client and congratulate Mainstream Renewable Power on being awarded the CfD.”

David Sweenie, Project Manager of Neart na Gaoithe said “Mainstream recognized the innovative approach of FLiDAR from an early stage, bringing accurate wind data at low cost in a short delivery window.

The data provided by FLiDAR has contributed to the great successes of Neart na Gaoithe so far. “   The FLiDAR technology has been developed by 3E, global renewable energy consultancy and software provider, and Offshore & Wind Assistance (OWA), the subsidiary of marine contractor Geosea.   The FLiDAR equipment consists of an industry standard Mobilis buoy equipped with a state-of-the-art buoy-adapted LEOSPHERE WINDCUBEv2 LiDAR held in a passive mechanical stabilisation system. It has previously been tested and validated against fixed met masts in the North Sea and in Irish Sea (as part of the UK’s Carbon Trust Offshore Wind Accelerator programme). The performance has been analysed and validated by third parties and has been proven to deliver wind data with accuracy equivalent to standard offshore wind measurements.

CONTACT For further information, please contact: Reinhardt Stevens, General Manager at FLiDAR, Reinhardt.Stevens@flidar.com

About FLiDAR

FLiDAR N.V., based in Oostende, Belgium, is a joint venture established in August 2012 between 3E and OWA (DEME group), to build, deploy and operate floating LiDAR based measurement devices. FLiDAR N.V. combines the experience of 3E, an independent consultant and software services provider with more than 10 years of experience in offshore wind measurement and modelling, OWA, a daughter company of DEME, an offshore contractor with huge amount of experience in offshore operations, LEOSPHERE, the world’s leading manufacturer of LiDAR technology and Mobilis, a buoy supplier with a track record of manufacturing and deploying buoys for long periods in extreme offshore locations. The FLiDAR device can measure wind potential up to 200m above mean sea level with accuracy equivalent to a standard offshore measurement mast, but at significantly lower costs.

+
http://www.leosphere.com/news_events/world-atm-congress-2015
12/2014

World ATM Congress 2015

Madrid, Spain 10-12 March 2015 http://www.worldatmcongress.org/

Madrid, Spain 10-12 March 2015 http://www.worldatmcongress.org/

http://www.leosphere.com/news_events/ewea-offshore-2015
12/2014

EWEA OFFSHORE 2015

Copenhagen, Denmark -10-12 March 20415 –  http://www.ewea.org/offshore2015/

Copenhagen, Denmark -10-12 March 20415 –  http://www.ewea.org/offshore2015/

http://www.leosphere.com/news_events/ams-annual-meeting
12/2014

AMS 2015 Annual Meeting

Phoenix, USA – 4-8 January 2015 – Fulfilling the Vision of Weather, Water, and Climate Information for Every Need, Time, and Place –http://annual.ametsoc.org/2015/

Phoenix, USA – 4-8 January 2015 – Fulfilling the Vision of Weather, Water, and Climate Information for Every Need, Time, and Place –http://annual.ametsoc.org/2015/

http://www.leosphere.com/news_events/edf-signs-5-year-framework-agreement-flidar
12/2014

EDF signs 5 year framework agreement with FLiDAR

EDF has signed a 5 year framework agreement with FLiDAR for offshore wind resource measurements. FLiDAR, the world’s leading supplier of floating lidar technology, will deploy several of their buoys on EDF offshore wind farms over the coming years.EDF has signed a 5 year framework agreement with FLiDAR for offshore wind resource measurements. FLiDAR, the

logo FLIDAR

EDF has signed a 5 year framework agreement with FLiDAR for offshore wind resource measurements. FLiDAR, the world’s leading supplier of floating lidar technology, will deploy several of their buoys on EDF offshore wind farms over the coming years.EDF has signed a 5 year framework agreement with FLiDAR for offshore wind resource measurements. FLiDAR, the world’s leading supplier of floating lidar technology, will deploy several of their buoys on EDF offshore wind farms over the coming years.

The FLiDAR units have recently been validated by DNV GL as reaching Stage 2 on the Carbon Trust Roadmap, which greatly reduces the uncertainty of the measured data. The technology is now accepted by the leading players in the offshore wind industry as a low cost and highly accurate alternative to fixed met masts and FLiDAR is at the forefront of this development.

Bruce Douglas, General Manager at FLiDAR, said: “We are delighted to be chosen to deliver our low-cost, high-value wind resource solution to EDF. This 5 year agreement proves the confidence that EDF has in our product and services.”

The FLiDAR technology has been developed by 3E, global renewable energy consultancy and software provider, and Offshore & Wind Assistance (OWA), the subsidiary of marine contractor Geosea.

The FLiDAR equipment consists of an industry standard Mobilis buoy equipped with a state-of-the-art buoy-adapted LEOSPHERE WINDCUBE®v2 LiDAR held in a passive mechanical stabilisation system. It has previously been tested and validated against fixed met masts in the North Sea and in Irish Sea (as part of the UK’s Carbon Trust Offshore Wind Accelerator programme). The performance has been analysed and validated by third parties and has been proven to deliver wind data with accuracy equivalent to standard offshore wind measurements.

NOTE TO EDITORS

Upcoming events FLiDAR will be at the following events: EWEA Offshore 2015, Copenhagen, 10-12 March

CONTACT
For further information, please contact:
Reinhardt Stevens, Commercial Manager at FLiDAR, Reinhardt.Stevens@flidar.com

About FLiDAR
FLiDAR N.V., based in Oostende, Belgium, is a joint venture established in August 2012 between 3E and OWA (DEME group), to build, deploy and operate floating LiDAR based measurement devices.
FLiDAR N.V. combines the experience of 3E, an independent consultant and software services provider with more than 10 years of experience in offshore wind measurement and modelling, OWA, a daughter company of DEME, an offshore contractor with huge amount of experience in offshore operations, LEOSPHERE, the world’s leading manufacturer of LiDAR technology and Mobilis, a buoy supplier with a track record of manufacturing and deploying buoys for long periods in extreme offshore locations.
The FLiDAR device can measure wind potential up to 200m above mean sea level with accuracy equivalent to a standard offshore measurement mast, but at significantly lower costs.
www.FLiDAR.com

+
http://www.leosphere.com/news_events/leosphere-to-appoint-kona-our-official-distributor-in-the-uk-and-ireland-meet-us-renewableuk-2014
11/2014

LEOSPHERE to appoint KONA our official distributor in the UK and Ireland : meet us @ RenewableUK 2014

LEOSPHERE is pleased to announce that KONA has been appointed our official distributor in the UK and Ireland. KONA (incorporating lynx metmAsts and Shamrock Communications) are a leading specialist supplier of masts, towers and data technologies. Their success and wealth of experience in wind measurement technologies will benefit all our UK and Irish

LEOSPHERE is pleased to announce that KONA has been appointed our official distributor in the UK and Ireland. KONA (incorporating lynx metmAsts and Shamrock Communications) are a leading specialist supplier of masts, towers and data technologies. Their success and wealth of experience in wind measurement technologies will benefit all our UK and Irish customers.

 

KONA will be delighted to introduce our WINDCUBE v2 system at the Renewable UK event and explain how we can add value to your wind projects with LIDAR technology. Loic Maurillon, our Area Sales Manager will be present on the stand of KONA (booth 232A) and will also be happy to catch up with you.

 

KONA_RenUK

We are also pleased to invite you to join us at our side event  “KONA Your Data: Our Structures & Leosphere LiDAR technology presentation”, which will take place on Wednesday 12th November from 12:45 – 14:30. This conference and social event will take place at Exchange 10, First Floor. Please register your interest in attending by email to cesina.morroll@konastructures.com.

 

See more

+
http://www.leosphere.com/news_events/standalone-lidar-measurements-now-included-in-the-latest-revision-of-the-german-tr6-wra-guideline
10/2014

Standalone LIDAR measurements now included in the latest revision of the German TR6 WRA guideline

Since September 22nd the latest revision of the German TR6 guideline for Wind Resource Assessment entered into force. The objective of these Technical Guidelines for Wind Turbines (known since 1998 as FGW Guidelines) is to present measuring methods allowing the determination of reliable and comparable data for the wind power market, based on state-of-the-art technology.

Since September 22nd the latest revision of the German TR6 guideline for Wind Resource Assessment entered into force.

The objective of these Technical Guidelines for Wind Turbines (known since 1998 as FGW Guidelines) is to present measuring methods allowing the determination of reliable and comparable data for the wind power market, based on state-of-the-art technology. The measurement methods described will serve as best practice for Wind Resource Assessment campaigns in Germany.

 

Remote sensing made its entrance in the latest revision as an authorized site assessment method under two conditions: 

– a device verification test, similar to anemometer calibration, should be conducted every two years by a third part

– and the remote sensing device should undertake a classification test, which the WINDCUBE v2 has already successfully passed (report available upon request).

Courtesy_Of_GWU

Courtesy_Of_GWU

 

 

The guideline now requires 12 consecutive months of measurement, with a minimum data availability of 80%. This represents a major breakthrough for remote sensors now officially recognized by industry leaders as bankable and reliable measurement devices for your wind power development projects.

 

 

 

Only available in German today, an English release of the guideline is expected in the coming months. For more information, please consult : http://www.wind-fgw.de/TR.html

 

+
http://www.leosphere.com/news_events/ewea-technology-worshop
10/2014

EWEA Technology Worshop

Malmo, Sweden 9-10 December 2014  – “Analysis of Operating Wind Farms 2014” – http://www.ewea.org/events/workshops/operational-assessment-2014/

Malmo, Sweden 9-10 December 2014  – “Analysis of Operating Wind Farms 2014” – http://www.ewea.org/events/workshops/operational-assessment-2014/

http://www.leosphere.com/news_events/awea-wind-resource-project-energy-assessment-seminar-2014
10/2014

AWEA Wind Resource & Project Energy Assessment Seminar 2014

http://www.leosphere.com/news_events/renewable-uk-36th-annual-conference-and-exhibition
10/2014

Renewable UK – 36th Annual Conference and Exhibition

http://www.leosphere.com/news_events/ewea-workshop-technology-analysis-of-operating-wind-farms-2014
10/2014

Nordic Wind power Conference (Ecopower Academy)

Stockholm,Sweden 04-05 November 2014  – “Operations and Maintenance” – http://ecopoweracademy.com/conference.aspx?ConferenceID=16

Stockholm,Sweden 04-05 November 2014  – “Operations and Maintenance” – http://ecopoweracademy.com/conference.aspx?ConferenceID=16

http://www.leosphere.com/news_events/one-year-measurement-in-saudi-arabia
10/2014

One year measurement in Saudi Arabia with WINDCUBE v2

Alpha Wind Metrum ApS (AWM) has successfully completed a one year WINDCUBE v2 measurement campaign in the desert of Saudi Arabia. The challenge of such deployment was linked to the high temperatures (more than 45°C), the solar radiation (>2300 kWh/m2) and sand storms. As the WINDCUBE v2 has no moving parts, it insured a high

Alpha Wind Metrum ApS (AWM) has successfully completed a one year WINDCUBE v2 measurement campaign in the desert of Saudi Arabia. The challenge of such deployment was linked to the high temperatures (more than 45°C), the solar radiation (>2300 kWh/m2) and sand storms. As the WINDCUBE v2 has no moving parts, it insured a high reliability and AWM developed a dedicated container with an air conditioning system to sustain the very hot conditions. In the end, the LIDAR provided highly accurate wind speed and direction measurement with great availability. This deployment has shown, one more time, that the WINDCUBE v2 is the measurement tool of choice wherever the location.

AlphaWind_Wind Lidar measurement in Saudi Arabia desert

+
http://www.leosphere.com/news_events/press-release-mainstream-and-dnv-gl-validate-floating-offshore-wind-measurement-device-as-part-of-carbon-trust-owa-programme
09/2014

PRESS RELEASE: Mainstream and DNV GL validate floating offshore wind measurement device as part of Carbon Trust OWA programme

On behalf of Mainstream Renewable Power, DNV GL (formerly GL Garrad Hassan & DNV KEMA) has successfully completed an  independent validation assessment of the FLiDAR offshore wind measurement device. Based on the results, FLiDAR’s floating LIDAR (Light Detection and Ranging) device has now formally reached Stage 2 on

On behalf of Mainstream Renewable Power, DNV GL (formerly GL Garrad Hassan & DNV KEMA) has successfully completed an  independent validation assessment of the FLiDAR offshore wind measurement device. Based on the results, FLiDAR’s floating LIDAR (Light Detection and Ranging) device has now formally reached Stage 2 on the Carbon Trust Offshore Wind Accelerator Roadmap for commercial acceptance.

The FLiDAR equipment consists of a marine buoy equipped with a state-of-the-art buoy-adapted LEOSPHERE WINDCUBE®v2 LiDAR held in a passive mechanical stabilisation system.

FLiDAR at NAREC met mast

More information:m Download the Press Release>

+ Download
http://www.leosphere.com/news_events/3368
09/2014

Enhancing ash surveillance in Iceland

As a consequence of the Eyjafjallajökull eruption in 2010, which caused major disruptions to the European air traffic, the Icelandic Meteorological Office and ISAVIA underwent a number of initiatives to improve the existing infrastructure for better monitoring and mitigating the impact of future explosive eruptions on aviation. After some internal research, LIDAR technology was quickly

As a consequence of the Eyjafjallajökull eruption in 2010, which caused major disruptions to the European air traffic, the Icelandic Meteorological Office and ISAVIA underwent a number of initiatives to improve the existing infrastructure for better monitoring and mitigating the impact of future explosive eruptions on aviation.

After some internal research, LIDAR technology was quickly identified by IMO as a major source of information that can be provided to ISAVIA and the London VAAC, in complement to traditional predictive systems. The major benefit of LIDAR is that it helps to assess in real-time the existence and the transport of ash plumes, as well as in some cases, to derive some indication like the height of the plume and its density thanks to the coupling with models and in-situ information.LIDARs gives therefore precious information for regulating the use of airspace in an eruption, as the danger threshold depends on the plume concentration.

In addition, the airspace of both the national airport in Reykjavik as well as Keflavik international airport can be affected by re-suspended ash events in strong easterly wind in the aftermath of an explosive eruption. Re-suspended ash reduces visibility and ceiling as other dust storms but in addition it can be as dangerous to aircraft engines as ash plumes and therefore further limit the airport traffic. Monitoring the airspace of the international airport is essential for informative decisions.

lidar Iceland eruption

In order to build a set of LIDAR instruments to help air traffic operations in Iceland, ISAVIA issued in 2012 a tender for two LIDAR systems that could provide a flexible 3D scan to retrieve both aerosol presence and characterization as well as wind information, in order to get a remote real-time cartography of ash plumes.

LEOSPHERE has been selected to provide two WINDCUBE 200S LIDAR systems. They have been installed in 2013: one fixed system at Keflavik international airport, and one mobile system that will be integrated in a trailer for fast remote deployment in case of eruption emergency. The installation will proceed in two steps. In the current first step, IMO is working on the aerosol detection and wind measurement capabilities. They will later this year work on an exclusive aerosol typing module which will help to better characterize ash plumes over other aerosols, hence providing additional decision information for air traffic control.

This improved monitoring equipment could be particularly valuable in case of possible future eruption (such as Bardabunga).

+
http://www.leosphere.com/news_events/press-release-wind-iris-reduces-yaw-misalignment-and-improves-turbine-performance
09/2014

PRESS RELEASE: Wind Iris reduces yaw misalignment and improves turbine performance

A collaborative research project at the Energy Department’s (DOE) National Renewable Energy Laboratory (NREL) has shown that the Wind Iris nacelle-mounted LIDAR from Avent Lidar Technology is an effective diagnostic tool for identifying wind turbine yaw misalignment, allowing users to improve wind turbine performance. This is the first independent scientific field study validating the benefits

A collaborative research project at the Energy Department’s (DOE) National Renewable Energy Laboratory (NREL) has shown that the Wind Iris nacelle-mounted LIDAR from Avent Lidar Technology is an effective diagnostic tool for identifying wind turbine yaw misalignment, allowing users to improve wind turbine performance. This is the first independent scientific field study validating the benefits of using turbine mounted LIDAR to correct rotor-induced yaw misalignment. An AEP increase of 2.4% has been estimated for a 7.5° misalignment.

Photo credit_Lee Jay Fingersh_NREL

Photo credit: Lee Jay Fingersh, NREL

More information: Download the Press Release

+ Download
http://www.leosphere.com/news_events/mtwe-2014
09/2014

MTWE 2014

Brussels, 21-23 October 2014 – Booth 4010 – http://www.meteorologicaltechnologyworldexpo.com/french/

Brussels, 21-23 October 2014 – Booth 4010 – http://www.meteorologicaltechnologyworldexpo.com/french/

http://www.leosphere.com/news_events/colloque-national-eolien
09/2014

Colloque national éolien

http://www.leosphere.com/news_events/wind-energy
09/2014

Wind Energy

Hamburg, 23-26 september 2014 – Booth 332 – www.windenergyhamburg.com

Hamburg, 23-26 september 2014 – Booth 332 – www.windenergyhamburg.com

http://www.leosphere.com/news_events/atc-global
09/2014

ATC GLOBAL

Beijing, 17-19 September 2014 – Booth A631 – www.atcglobalhub.com/index.php/en

Beijing, 17-19 September 2014 – Booth A631 – www.atcglobalhub.com/index.php/en

http://www.leosphere.com/news_events/airport-leosphere-meets-the-future-needs-of-aviation-weather-monitoring
07/2014

LEOSPHERE meets the future needs of Aviation Weather monitoring

LEOSPHERE is an active partner of the UFO (UltraFast wind sensOrs for wake-vortex hazards mitigation) project, led by Thales and with 12 European partners. This project aims at developing prototype systems and instruments to improve the measurement capabilities of wind and EDR (Eddy Dissipation Rate) for optimizing wake vortex mitigation and enhancing weather forecasts

LEOSPHERE is an active partner of the UFO (UltraFast wind sensOrs for wake-vortex hazards mitigation) project, led by Thales and with 12 European partners. This project aims at developing prototype systems and instruments to improve the measurement capabilities of wind and EDR (Eddy Dissipation Rate) for optimizing wake vortex mitigation and enhancing weather forecasts around airports. This project paves the way for advanced multi-functions sensors that will serve the future meteorological needs of airports in order to ensure safety and optimization of air traffic, anticipating the challenges ahead.

3 Doppler WINDCUBE LIDARs have been deployed this spring 2014 in Toulouse airport in order to validate the capacity of the systems to provide advanced wind information for wake vortex mitigation.

One of the deployed system is a ground-breaking scanning LIDAR prototype embedding a high-power laser source developed in collaboration with ONERA, the French aerospace agency. This prototype instrument embeds a laser source 2 times more powerful than the commercially available WINDCUBE 400S-AT used for operational wind shear monitoring. This added power allows to capture wind and turbulence information in a very large area around the airport, at a high frequency which could allow this LIDAR system to constitute a multifunction instrument not only being able to provide wind shear alerts but also to provide wind and EDR measurements through the glide path and in the vicinity of airports to improve weather forecasts and optimize air traffic management.
The second LIDAR was deployed for monitoring wake vortices in real time near the ground in order to develop a unique wake data collection. The third LIDAR was a WINDCUBE v2 vertical profiler which was used to evaluate the accuracy of the wind speed retrievals at 5 km of the scanning lidar.

Since the deployment, LEOSPHERE has been able to demonstrate the ability of its systems to provide wind intensity and direction all along the glide slope to better take into account the risk of wind shear in the approach phase as well as to optimize arrival sequence and distance separation for the implementation of regulations standards like RECAT-EU.


Several months of instrument data will be further analyzed by UFO industrial partners over the course of 2014 to derive parameters such as the EDR which is a turbulence parameter that is key to the real time analysis of wake vortex decay.

LEOSPHERE is excited to contribute to shaping the future of air traffic by pushing the technological boundaries of current LIDAR systems.

Know more about our aviation weather scanning
LIDAR.
 

20140410_123914

+
http://www.leosphere.com/news_events/presse-releasepatented-flow-complexity-recognition-upgrade-validated-by-dtu
07/2014

PRESS RELEASE: Complex Terrain technology “FCR” validated by DTU

LEOSPHERE, the world leader in LiDAR technology, has announced today the validation of its patentedFlow Complexity Recognition (FCR) system upgrade to deliver wind measurement data of superior accuracy on complex wind sites. The strong performance of the FCR-upgraded WINDCUBE V2 LiDAR was field-tested and validated by DTU, on ERS’

LEOSPHERE, the world leader in LiDAR technology, has announced today the validation of its patentedFlow Complexity Recognition (FCR) system upgrade to deliver wind measurement data of superior accuracy on complex wind sites. The strong performance of the FCR-upgraded WINDCUBE V2 LiDAR was field-tested and validated by DTU, on ERS’ 48 MW wind farm located in Bosnia & Herzegovina.

Read more: dowlaoad the wholepress release

image PR_FCR Bosnia

 

 

+ Download
http://www.leosphere.com/news_events/press-release-partner-wind-iris-performance-in-india-meteopole
06/2014

Partner Press Release: Wind Iris campaign in India (MeteoPole)

Meteopole, partner of Avent Lidar Technology, has successfully started in June 2014 the first Wind Iris Performance Optimization project  in India in June 2014. This project will significantly increase the performance of the turbines, owned by Indian IPP Continuum Wind Energy, in Surajbari Windfarm, Gujarat. “ We are very proud to be the first Indian IPP

Meteopole, partner of Avent Lidar Technology, has successfully started in June 2014 the first Wind Iris Performance Optimization project  in India in June 2014. This project will significantly increase the performance of the turbines, owned by Indian IPP Continuum Wind Energy, in Surajbari Windfarm, Gujarat.
“ We are very proud to be the first Indian IPP to implement Wind Iris LiDAR for a power optimization campaign. With these first encouraging results, we are very optimistic about the potential of this new technology. We wish to thank the MeteoPole team for its commitment and professionalism which should ensure this campaign to be a full success. “ Prasanna Sawkar , Continuum Wind Energy 
“ So far, this first Power Performance Optimization Project in India has been a wonderful experience. It is an important milestone in the history of India Wind Industry: investing in reducing power losses will bring huge extra annual revenues for all wind farm owners. “ Karim Fahssis, MeteoPole –MeteoPole communication_Wind Iris in India_june2014_resized

+ Download
http://www.leosphere.com/news_events/scanning-lidar-for-wake-measurement
06/2014

Scanning LIDAR for wake measurement

As part of the CWEX program (Crop and Wind Energy Experiment, a multi-year field campaign) in USA, the University of Colorado, in collaboration with Iowa State University, coordinated a new field campaign within a large wind farm in summer 2013. This campaign was designed to explore the propagation of individual turbine wakes as well as

Scanning Lidar 200S - Iowa-Summer 2013- Michael Rhodes (3)

As part of the CWEX program (Crop and Wind Energy Experiment, a multi-year field campaign) in USA, the University of Colorado, in collaboration with Iowa State University, coordinated a new field campaign within a large wind farm in summer 2013. This campaign was designed to explore the propagation of individual turbine wakes as well as the interaction of multiple wakes in a range of atmospheric stability conditions. Multiple remote sensing systems, including the WINDCUBE vertical and scanning LIDARs from LEOSPHERE, were installed to characterize wind and turbulence throughout the wind farm. Supplementary measurements of temperature and moisture profiles were provided by a Radiometrics microwave radiometer. Initial outstanding results of this campaign were presented in an oral session at EWEA 2014 in Barcelona: see our white papers section

+
http://www.leosphere.com/news_events/the-science-of-making-torque-from-wind-dtu-conference
05/2014

The Science of Making Torque from Wind

Copenhagen, 17-20 june 2014 – (DTU Conference)  

Copenhagen, 17-20 june 2014 – (DTU Conference)

 

http://www.leosphere.com/news_events/wind-farm-monitoring-control
05/2014

Wind Farm Monitoring & Control

London, 4-5 june 2014 (Wind Power Monthly Conference)

London, 4-5 june 2014 (Wind Power Monthly Conference)

http://www.leosphere.com/news_events/intermet-asia
05/2014

InterMET Asia

Singapore, 2-3 june 2014 – booth D05 – www.intermet.asia

Singapore, 2-3 june 2014 – booth D05 – www.intermet.asia